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ABSTRACT: The Monte Carlo Independent Column Approximation (McICA) computes domain-average, broadband
radiative flux profiles within conventional global climate models (GCMs). While McICA is unbiased with respect to
the full ICA, it generates, as a by-product, random noise. If this by-product leads to statistically significant impacts
on GCM simulations, it could limit the usefulness of McICA. This paper assesses the impact of McICA’s random
noise on six GCMs. To this end, the GCMs performed ensembles of 14-day long simulations for various renditions
of McICA, each with differing amounts of random noise. As seen in the past, low-cloud fraction and surface temperature
were affected most by noise. However, all GCM simulations using operationally viable renditions of McICA showed
no statistically significant impacts, even for precipitation – a highly intermittent variable that one might expect to be
sensitive to random fluctuations. Two GCMs showed statistically significant responses using an academic version of
McICA that generates overly large sampling noise. Time series analyses of high-resolution (i.e. typically 2-hourly)
data revealed that fluctuations associated with most variables and GCMs are immune to McICA noise. Moreover,
the nature of these fluctuations can vary substantially among GCMs and most often they overwhelm any noise
impacts. Overall, the results presented here corroborate a range of previous studies done on one GCM at a time:
random noise produced by recommended versions of McICA has statistically insignificant effects on GCM simulations.
Copyright c© 2008 Royal Meteorological Society and Her Majesty in Right of Canada.
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1. Introduction

1.1. Background

It is recognized widely that, if general circulation models
(GCMs) are to satisfactorily simulate Earth’s climate,
physical processes responsible for hydro-radiative feed-
back mechanisms must be addressed and represented
well (e.g. Aires and Rossow, 2003; Randall et al., 2003).
Failing to cross this ill-defined line, a GCM stands
a good chance of serving only to heighten confusion
surrounding explanation, and thus simulation, of the
Earth–atmosphere system (cf. IPCC, 2007). Central to
adequate representation of hydro-radiative feedbacks lies
numerical simulation of atmospheric radiative transfer
(e.g. Stephens, 2005).

*Correspondence to: Howard Barker, Environment Canada, Cloud
Physics and Severe Weather Research Section (ARMP), 4905 Dufferin
St., Toronto, ON, Canada M3H 5T4. E-mail: howard.barker@ec.gc.ca
†The contribution of H. W. Barker, K. von Salzen and P. A. Vaillancourt
was written in the course of their employment by Environment Canada.

The common purpose for doing radiative transfer
calculations in GCMs is to provide atmospheric and
surface broadband flux convergence rates. Since the mid-
1970s, GCMs have employed multi-layer two-stream
approximations (TSAs) of the radiative transfer equation
(RTE; Meador and Weaver, 1980). At the heart of TSAs
is the assumption that atmospheric layers are horizontally
homogeneous. Hence, radiation flowing within a GCM
column is assumed not to interact with neighbouring
columns. This is the independent column approximation
(ICA; Stephens et al., 1991). Given that horizontal grid
spacings exceed 50 km in most GCMs, it is reasonable
to apply the ICA at a GCM’s inner scale.

Given the task at hand, multi-layer TSA algorithms
eventually came to address columns whose layers
were only partially filled by clouds which, in turn,
overlapped vertically according to idealized rules,
notably maximum-random overlap (MRO; Geleyn and
Hollingsworth, 1979; Morcrette and Fouquart, 1986; Tian
and Curry, 1989; Stubenrauch et al., 1997). Given that
MRO systematically underestimates vertically projected
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cloud fraction (Räisänen et al., 2004), GCM radiative
transfer codes based on MRO rely on horizontally
homogenous clouds that are too attenuative relative to
variable clouds with the same mean optical thickness
(cf. Barker et al., 1999, 2003; Cole et al., 2005).

While several attempts have been made to account
for effects of horizontal variations in single-layer clouds
(e.g. Stephens, 1988; Davis et al., 1990; Cahalan et al.,
1994; Barker, 1996; Cairns et al., 2000), they resemble
each other in that they use the TSA, strive for analytic
expressions for layer reflectance and transmittance, but
pay little attention to covariations in the horizontal
and vertical. Oreopoulos and Barker (1999) recognized
the untenability of investing the MRO scheme with
horizontally variable clouds, but their model and results
resembled other attempts to account for unresolved cloud
fluctuations in 1D codes: limited ranges of applicability
and, seemingly, irreconcilable biases relative to the ICA.

Judging from GCM radiative transfer algorithms
developed from the late 1970s to early 2000s, it could
be argued that a paradigm was established based on the
logic:

Because radiative fluxes depend on cloud
structure, this implies that descriptions of
cloud structure at scales �x < �xGCM,
where �xGCM is the GCM grid spacing,
should be a subset of (i.e. built directly into)
the radiative transfer algorithm.

There is, however, no sound reason to believe that this
logic will lead to algorithms that either allow for satisfac-
tory description of cloud properties or account properly
for interactions between radiation and clouds at scales
smaller than �xGCM. Indeed, models based on this logic
seem bound to approximations, limitations, and biases.

1.2. The Monte Carlo-based solution

If a GCM’s column were to be resolved into J sub-
columns, and the ICA applied to them, domain-average,
broadband fluxes would be defined as

〈F 〉 = 1

J

J∑
j=1

K∑
k=1

F(j, k), (1)

where K is the number of spectral intervals, and F is flux
from a 1D solution of the RTE. While (1) is the standard
aspired to by GCM radiation algorithms (Collins, 2001),
it is computationally intractable. As an alternative to (1),
and the aforementioned 1D solvers, Barker et al. (2002)
proposed the Monte Carlo ICA (McICA) method. McICA
rests on sampling stochastically generated subcolumns
of a GCM column, performing 1D radiative transfer
calculations on them, and averaging the results (Pincus
et al., 2003, 2006; Räisänen et al., 2004). As sampling is
done during spectral integration, McICA reduces (1) to a
single sum over k.

McICA represents a distinct departure from conven-
tional methods because it separates the description of

unresolved media from the radiative transfer algorithm
while remaining unbiased with respect to (1). As such, it
is extremely flexible for it admits any one-point statistical
description of unresolved media, and subgrid variability
can be handled easily by any 1D solution of the RTE and
not just TSAs. Moreover, because a basic TSA (e.g. Wis-
combe, 1977) is used, McICA execution times are close
to, if not less than, those of conventional schemes. As a
by-product, however, McICA produces flux profiles that
contain sampling noise.

Three studies (Räisänen et al., 2005; Pincus et al.,
2006; Morcrette et al., 2008) suggest that McICA noise
can be reduced to the point of having negligible impact
on GCM simulations. Räisänen et al.’s (2005) tests
with the National Center for Atmospheric Research
(NCAR) Community Atmospheric Model version 1.8
(CAM-v1.8) showed however that, if large enough,
McICA’s noise can have statistically significant affects
on GCM simulations. Thus, the main point of the current
study is to assess the sensitivities of several GCMs, with
differing physical parametrizations and dynamical cores,
to stochastic noise generated by McICA. To this end, each
GCM, with various renditions of McICA and a suitable
stochastic subgrid-scale cloud generator, performed 14-
day ensemble simulations.

The following two sections describe the experiments
and the GCMs involved in the intercomparison. The
fourth section presents the magnitudes of McICA noise
and summarizes the results of the experiments, and the
final section contains conclusions.

2. Experimental design

Table 1 summarizes the GCMs used in this study.
The experiments performed by each GCM follow those
performed by Räisänen et al. (2005). These experiments
are summarized in the following subsections, but first the
rationale for the experiments is discussed.

2.1. Rationale

Stochastic fluctuations of radiative fluxes generated by
McICA can be thought of as extraneous information
injected into a GCM at its radiative time step and
grid spacing. For a fairly noisy version of McICA,
Räisänen and Barker (2004) estimated typical standard
deviations for instantaneous net surface irradiances to
be ∼50 W m−2, the vast majority due to solar radiation.
From time step to time step and cell to cell, McICA noise
is uncorrelated so standard deviations of accumulated
fluxes decay like 1/

√
N , where N is number of time

steps or grid points. Given that the radiative time step
for most GCMs is ∼1 h, the magnitude of McICA noise
for diurnal-mean net surface fluxes is O(10 W m−2). As
can be seen in Figure 1, this is much smaller than diurnal
standard deviations for surface irradiance that arise via
the diurnal solar cycle (which are approximately half
the values shown). It stands to reason, therefore, that
for McICA’s noise to excite change, it would have to
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Table I. Summary of the characteristics of participating GCMs.

Institute Model Resolution Dynamic Save interval
time step (min) (hr)

Environment Canada–Canadian
Meteorological Centre (EC-CMC) GEM 1.5◦ × 1.5◦; L60 30 2

Environment Canada–Canadian Centre for
Climate Modelling and Analysis (EC-CCCma) CCCma T47; L35 20 2

Finnish Meteorological Institute (FMI) ECHAM5-FMI T42; L31 20 2
European Centre for Medium-range

Weather Forecasts (ECMWF) ECMWF TL159; L91 60 2
Geophysical Fluid Dynamics Laboratory

(GFDL) GFDL-AM2 2◦ × 2.5◦; L24 60 1 and 3
Pennsylvania State University (PSU) CAM3 PSU T42; L26 60 1

Figure 1. (a) diurnal-mean solar irradiance at the top of the atmosphere (TOA) as a function of time and latitude. (b) shows the corresponding
standard deviation of solar irradiance at the TOA due simply to the Earth’s rotation. Corresponding values for net surface irradiance are about

half those shown here. Light and dark shaded regions denote perpetual sun-up and sun-down periods, respectively.

do so quickly. Likewise, if noise-induced, short-term
impacts yield significant biases, one can expect those
biases to effectively force slower climatic variables and
thus jeopardize McICA’s utility.

Following this line of reasoning, relatively short sim-
ulations should suffice to elucidate impacts of McICA’s
stochastic noise on fast components of the climate system.
Since slower components, such as deep soil moisture and
mixed-layer ocean temperature, respond to surface energy
budgets integrated over weeks, it is hypothesized that if
fast components do not respond to high-frequency noise,
long-term climate simulations will not respond either.
This rationale resembles that of the US DoE’s Climate
Change Prediction Program (CCPP) and Atmospheric
Radiation Measurement (ARM) Program (CCPP-ARM)
Parameterization Testbed (CAPT) study (Philips et al.,
2004).

2.2. The experiments

Based on the reasoning just explained, 14-day long GCM
simulations were used for this intercomparison. McICA
fluctuations for surface fluxes integrated over two weeks
are about 20 times smaller than instantaneous values.
Following Räisänen et al.’s (2004) calculations, this cor-
responds roughly to radiative fluctuations associated with
fortnightly mean total cloud fraction changes of ∼0.02.

Hence, we are satisfied that if significant differences do
not appear after 14 days, it is unlikely that the noise could
somehow tunnel-up at longer scales and significantly alter
a simulation relative to a noiseless reference.

There are several versions of McICA that yield sub-
stantially different amounts of noise (Räisänen and
Barker, 2004). The least noisy incarnation was defined
as the reference. Most GCMs performed five experiments
with varying amounts of noise, each consisting of a 10-
member ensemble. The experiments are described in the
following subsections. Ensembles were created for each
experiment by starting the GCM 6 hours apart off a ‘spun-
up’ simulation. As such, the j th ensemble member of all
experiments had the same initial conditions. This initial-
ization process is illustrated in Figure 2.

Two sets of experiments were performed: one started
from 1 January, the other from 1 July. This was to
explore whether the impact of McICA stochastic noise
is state-dependent in addition to GCM-dependent. All
indications suggest that this is not the case so only
January results are shown and discussed. In all cases,
sea-surface temperatures were prescribed. For brevity,
the following explanation of experiments assumes a
radiation code based on the correlated k-distribution
(CKD) method (Fu and Liou, 1992), which was not
always the case.
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Figure 2. Schematic diagram showing production of ensembles of 14-day simulations. All GCMs produced 10-member ensembles (i.e. M = 10)
though not all performed all five ensembles which are denoted here as 1COL, BASIC, CLDS, SPEC and REF.

Figure 3. Schematic diagram showing production of noise estimates for various renditions of McICA (denoted here as 1COL, BASIC, CLDS,
SPEC and REF).

2.2.1. Experiment 1: 1COL

If a single subcolumn is generated stochastically at each
time step and spectral integration (over K quadrature
points) is performed on that subcolumn, (1) becomes

〈F 〉 =
K∑

k=1

F(α, k) (2)

where α represents the generated subcolumn. This
approach yields copious McICA noise and is referred to
as ‘1COL’. Moreover, it resembles the method used in the
Goddard Institute for Space Studies GCM (A. A. Lacis,
2007, personal communication).

2.2.2. Experiment 2: BASIC

Sampling is improved over 1COL by generating a sub-
column (cloudy or clear) for each integration point and
computing flux as

〈F 〉 =
K∑

k=1

F(αk, k) (3)

where αk represents one of K generated columns.
Being the most straightforward, code-friendly version of
McICA, it is referred to as the ‘BASIC’ experiment.

2.2.3. Experiment 3: CLDS

Because GCMs have to compute clear-sky radiative
fluxes to estimate cloud radiative effects, it is reason-
able, though not necessary, to perform a full clear-sky
calculation and devote all of McICA’s samples to the
cloudy (variable) portion of a domain. Thus, by demand-
ing that randomly generated subcolumns contain cloud,
total flux is

〈F 〉 = (1 − Ac)

K∑
k=1

F(αclr, k) + Ac

K∑
k=1

F(αcld,k, k) ,

(4)

where αclr represents the clear-sky subcolumn, αcld,k
represents one of K cloudy subcolumns, and Ac is
vertically projected cloud fraction. Ac can be estimated
rapidly and accurately by generating many subcolumns
with a stochastic cloud generator that avoids estimation
of water contents. Since random sampling is confined
to cloudy subcolumns, this experiment is referred to as
CLDS. Obviously, the amount of noise generated by
BASIC is greater than or equal to that produced by CLDS.
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Figure 4. Standard deviation σ of surface solar irradiance as a function of mean solar irradiance µ for three versions of McICA (1COL, BASIC
and CLDS) for the six GCMs considered in this study. Colours indicate the natural logarithm of the number of samples in each bin (of which

there are 15 × 15). This figure is available in colour online at www.interscience.wiley.com/journal/qj
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Figure 5. Area-weighted relative frequencies of total cloud fraction
for the entire Earth for the six GCMs used in this study. f0.05 and
f0.95 refer to the fractional areas with total cloud fractions less than
0.05 and greater than 0.95. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

2.2.4. Experiment 4: SPEC

An efficient way to reduce McICA noise is to sample
additional cloudy subcolumns for spectral intervals that
contribute most to McICA’s noise. These points are
generally those with large cloud radiative effects. As
such, this version of McICA defines fluxes as

〈F 〉 =(1 − Ac)

K∑
k=1

F(αclr, k)

+ Ac

K∑
k=1

[
1

Nk

Nk∑
i=1

F(αcld,i,k, k)

]
,

(5)

where Nk are the number of samples generated for
k, and N = ∑K

k=1 Nk is the total number of samples
generated. This version of McICA is referred to as
SPEC because additional samples are assigned to specific
spectral intervals (cf. the splitting technique as described
in Marchuk et al., 1980). Note that for CLDS, Nk = 1 and
so N = K. However, it was recommended that for this
model N ≈ 1.5K. Räisänen and Barker (2004) provide
a procedure for defining {Nk} that reduces variance
optimally.

2.2.5. Experiment 5: REF

Finally, a reference experiment, referred to as REF, was
performed by most GCMs, and characterized by very
weak noise. The simplest and most economical way
to do this is to use the SPEC model with large N .
The GFDL GCM uses a very small number of spectral
points and therefore its REF experiment was the (less
economical) ICA using K subcolumns (Pincus et al.,
2006). Nevertheless, noise associated with REF is much
smaller than that of 1COL and notably less than that of
SPEC.

3. Description of GCMs

Tables I and II summarize characteristics of the GCMs
that participated in the intercomparison. CMC and GFDL
are finite-volume models; the other four are spectral
models. Horizontal resolutions varied from ∼100 km to
∼250 km, and number of vertical layers ranged from
24 to 91. While some subgrid-scale parametrizations
are common to more than one GCM (e.g. GEM and
CCCma used the same radiation codes), and others use
parametrizations with common lineages (e.g. ECMWF
and ECHAM5), no two GCMs share the exact same
collection of parametrizations.

Table II. Summary of the characteristics of GCM radiative
transfer models. (Radiation time step = 1 h in all cases.)

Model Quadrature points (SW/LW)

GEM 35/ 46
CCCma 35/ 46
ECHAM5-FMI 4/140
ECMWF 112/140
GFDL 18/ 7
CAM3 PSU 55/ 67

Morcrette (2000) and Räisänen et al. (2005) showed
that changing the radiative time step �trad from 1 h to 3 h
can influence a GCM’s simulation. With McICA there is
the added concern that large �trad might allow a GCM
to incorporate the effects of radiative anomalies into the
overall character of the simulation (Räisänen et al., 2005).
For the experiments reported here, the GFDL and GEM
models were run with 3 h and 2 h time steps in addition
to a 1 h time step. Differences between the runs were
very minor, so results only for the shorter time step are
discussed below.

Lacking rules pertaining to description of unresolved
horizontal variations in cloud water and vertical overlap
of fractional cloud, groups were left to define them for
themselves. While this sidesteps the utility of McICA,
recall that it is the spread in McICA-generated stochastic
noise that is important for these experiments; details of
unresolved cloud morphology are secondary. As seen
later, wide ranges of noise were achieved by all GCMs.

4. Results

Results are presented in two sections. The first summa-
rizes variations in stochastic noise as a function of GCM.
The second presents GCM responses as a function of
noise.

4.1. Magnitude of McICA noise

To quantify the magnitude of the stochastic noise gen-
erated for the five experiments, standard deviations of
variables responsible for producing noise were computed
for each rendition of McICA by generating subgrid-scale
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Figure 6. Hovmöller-like diagrams of fractional areas of zonal bands exhibiting statistically significant differences, at the 95% confidence level,
in low-cloud fraction for the various renditions of McICA relative to their respective reference (REF) simulations. McICA noise decreases from
left to right. Note that if samples were drawn only from the REF simulation (i.e. the experimental samples were unambiguously pulled from the

control population), plots would be characterized by white noise, resembling ‘snow’ on a TV screen, with means of 0.05.

Copyright c© 2008 Royal Meteorological Society and Her Majesty in Right of Canada. Q. J. R. Meteorol. Soc. 134: 1463–1478 (2008)
DOI: 10.1002/qj



1470 H. W. BARKER ET AL.

Fi
gu

re
7.

G
lo

ba
l

pl
ot

s
sh

ow
in

g
st

at
is

ti
ca

ll
y

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
be

tw
ee

n
m

ea
n

lo
w

-c
lo

ud
fr

ac
ti

on
s

on
th

e
14

th
da

y
of

th
e

si
m

ul
at

io
ns

fo
r

th
e

B
A

SI
C

re
nd

it
io

n
of

M
cI

C
A

re
la

ti
ve

to
th

e
co

rr
es

po
nd

in
g

R
E

F
co

nt
ro

l.
L

ig
ht

bl
ue

an
d

re
d

co
rr

es
po

nd
to

un
de

r-
an

d
ov

er
es

ti
m

at
io

ns
by

B
A

SI
C

th
at

ar
e

si
gn

ifi
ca

nt
at

th
e

95
%

co
nfi

de
nc

e
le

ve
l.

L
ik

ew
is

e,
da

rk
bl

ue
an

d
re

d
si

gn
if

y
th

e
sa

m
e

bu
t

at
th

e
99

%
co

nfi
de

nc
e

le
ve

l.
T

he
G

C
M

is
in

di
ca

te
d

in
th

e
ti

tl
e

al
on

g
w

it
h

th
e

fr
ac

ti
on

al
ar

ea
of

th
e

gl
ob

e
ha

vi
ng

st
at

is
ti

ca
ll

y
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

at
th

e
95

%
co

nfi
de

nc
e

le
ve

l.
T

hi
s

fig
ur

e
is

av
ai

la
bl

e
in

co
lo

ur
on

li
ne

at
w

w
w

.in
te

rs
ci

en
ce

.w
il

ey
.c

om
/j

ou
rn

al
/q

j

Copyright c© 2008 Royal Meteorological Society and Her Majesty in Right of Canada. Q. J. R. Meteorol. Soc. 134: 1463–1478 (2008)
DOI: 10.1002/qj
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clouds and calling the radiation code ten times at each
radiative time step for a single day (Figure 3). The
variables are short-wave (SW) and long-wave (LW)
radiative flux profiles, total cloud fraction, and cloud
liquid and ice water paths (actually, water contents are
subject to noise directly).

As an illustrative example, Figure 4 shows standard
deviation of SW radiative flux at the surface as a function
of the corresponding mean for the 1COL, BASIC, and
CLDS versions. The magnitude of noise and the rate
at which it decreases with increasing samples (left
to right across the figure) depends on several factors
including number of spectral intervals, diurnal cycle of
cloud properties, frequency distribution of cloud fraction
profile, and assumptions about unresolved clouds. This
plot shows the abundance of noise associated with 1COL
as well as the dramatic, and ubiquitous, reduction of
noise when going from 1COL to BASIC. The only GCM
to show a sizable reduction in noise when going from
BASIC to CLDS, where the total number of samples
remained the same, is the CCCma GCM. The most likely
reason for this has to do with the distribution of total
cloud fraction; McICA errors maximize at intermediate
cloud fractions and vanish at clear sky and almost vanish
at overcast. As Figure 5 shows, the CCCma GCM
has the fewest near-overcast and cloudless cases and
a large fraction of total cloud fractions near 0.25. The
other GCMs have relatively few intermediate total cloud
fractions; especially ECHAM5 which produces numerous
near-clear and overcast events. Note that a GCM that
produces only clear skies and overcasts will realize
minimal variance reduction when going from BASIC
to CLDS. This situation should become increasingly
prevalent as �xGCM → 0.

From Figure 4 alone one can predict, with reasonable
confidence, that most GCMs have little to gain from
CLDS, let alone the more elaborate SPEC. Nevertheless,
as argued by Räisänen and Barker (2004), all GCMs
compute clear-sky fluxes for diagnostic reasons, so there
is some motivation to employ CLDS and devote all
available stochastic samples to the cloudy, variance-
generating, portion of a column.

4.2. Impacts on GCM simulations

While numerous fields were saved from the simulations,
so few exhibited significant differences that presentation
of results focuses on low-cloud fraction and 2 m air tem-
perature, the variables that showed the greatest sensitiv-
ities to noise. Results are presented in two subsections:
one focusing on fractional areas of the globe that exhibit
statistically significant changes due to noise, and the other
on time series analysis.

4.2.1. Fractional areas of statistically significant
differences

A convenient way to summarize the kind of results
obtained here is the paired-difference version of Student’s
t-test (e.g. von Storch and Zwiers, 1999). This is because

ensemble members in one experiment have the same
initial conditions as those in another experiment. Hence,
the experiments are not fully independent of each other.
If two experiments, each with N ensemble members, are
being compared and xn and yn are the nth member of
their respective ensembles, define dn = xn − yn. The null
hypothesis to be tested is therefore H0: µxy = 0, where
µxy is the mean of the population of differences d from
which the sample, of size N , was drawn. From sampling
theory, the optimal test statistic is

t = µ̂xy

Sxy/
√

N
, (6)

where µ̂xy is the sample mean difference, and Sxy is the
corresponding unbiased sample variance. Assuming that
the sample differences follow Student’s distribution, t is
checked to see if it lies beyond a specified value, the
significance level, in the tail of the distribution. This is
done by checking if

1

ν
1
2 B

( 1
2 , ν

2

) ∫ t

−t

(
1 + x2

ν

)− ν+1
2

dx > tcrit , (7)

where ν = N − 1, B (1/2, ν/2) is the beta function, and
tcrit = 1 − α, where α is the level of significance one
is testing for. If (7) is true, the sampled difference is
considered to be statistically significant. Throughout this
study, α = 0.05 implying that all reported tests are at
the 95% confidence level. Note that if M samples are
drawn at random from a population, and sample pairs
are tested via (6) and (7), then on average, αM of them
will exhibit statistically significant differences. Reported
here are fractional areas of regions with GCM cells that
exhibit statistically significant differences. The regions
are typically zonal bands and the entire Earth.

Räisänen et al. (2005) showed that for CAM1.8,
low-cloud fraction exhibited the greatest sensitivity to
McICA noise. Low cloud is defined as cloud below
680 hPa. Figure 6 shows Hovmöller-like diagrams of the
fractional area of zonal bands with statistically significant
differences in low-cloud fraction for four renditions of
McICA relative to REF. The striking aspect of this
set of plots is that each model responds differently
to McICA noise, though all but some of the 1COL
versions display statistically insignificant ramifications
of noise. For instance, CCCma and ECHAM5 show
almost no dependence on noise level, while CAM3 and
GFDL experience dramatically reduced sensitivities to
noise going from 1COL to BASIC. The two highest-
resolution models, GEM and ECMWF forecast models,
show only a slight dependence on noise level, but, despite
being very different models, they share some common
features – namely, remarkably few significant responses
in the subtropical high regions with persistent, though
minor, differences throughout the Tropics. Presumably
differences in the Tropics stem from local processes
responding very quickly to noise but of such limited
strength that their influences are not felt very far outside
the cell in which they were initiated.
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Figure 8. Fractional areas of the globe exhibiting statistically significant 2 m air temperature differences, at the 95% confidence level, relative to
the REF control as functions of time for all experiments performed by all GCMs. Had the experiments been drawn from the control population,

lines would have been noisy with means very close to 0.05 (as most of the curves are beyond about the 10th day).

Several models (ECMWF, ECHAM5, GEM and
GFDL) show similar patterns for the mid and high lati-
tudes: a rather sudden transition, at roughly 8 days into
the simulations, from areas of difference slowly increas-
ing with time to being independent of time. Neverthe-
less, most latitudes have areas of significant difference of
approximately 5%, so these appear to be fluctuations due
simply to sampling from the same population with little,
or nothing, to do with response to noise.

The results just shown are applicable to 2 h instan-
taneous samples. Figure 7 shows global maps of the
location of significant differences in low-cloud frac-
tion averaged over the 14th day of the BASIC sim-
ulations. In general, the fractional areas showing sig-
nificant differences relative to REF are much smaller
than at the 2-hourly zonal level; the largest area is a
meagre 3.6% for the CCCma model. Moreover, one
is hard-pressed to discern any pattern in any of these
plots. This is another positive feature, for it suggests
that the effects of noise have not been incorporated
and transferred up-scale to affect change on regional
scales.

Figure 8 shows time series of fractional areas of the
globe that exhibit statistically significant noise-induced
responses on 2 m air temperature as functions of time. As
with low cloud, each model displays a unique response
to noise. Most models and renditions of McICA begin

the simulation looking as though they were drawn from
the same population as REF. The 1COL versions of
CAM3 and GEM show slight impacts of noise, while the
corresponding versions of CCCma and GFDL appear to
be heading toward acceptance of H0 by day 14. Consistent
with Räisänen et al.’s (2005) analyses, all other cases are
statistically indistinguishable from REF.

Precipitation is another crucial climatic variable that
one would hope is not influenced by noise. Moreover,
precipitation fields differ vastly from cloud fraction and
temperature on account of their extreme intermittency.
Figure 9 shows Hovmöller-like diagrams of fractional
areas of significant difference relative to REF for large-
scale precipitation for three GCMs and total precipitation
for the remaining three. Only 1COL and BASIC are
shown. Plotted along the bottom are time series of cor-
responding global areas. Most plots and curves demon-
strate extremely minor affects due to noise, often even
smaller than impacts on 2 m temperature. The exception
is ECMWF’s run with 1COL which shows a marked
response in the Tropics. Again, however, it is highly
unlikely that a modelling group would use 1COL, and
the impact is clearly crushed by the noise reduction of
BASIC, which is ECMWF’s operational configuration
(Morcrette et al., 2008).

As a final means of portraying the ramification, or lack
thereof, of McICA noise, Figure 10 shows fractional areas
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of the globe showing statistically significant changes to
low cloud fraction and 2 m temperature averaged over the
14th day as functions of globally averaged McICA noise
associated with net short-wave flux at the surface. These
plots show succinctly that if ever there is an issue with
noise, it is bound to the 1COL version of McICA. They
also show that the CAM stands the most to gain by going
from 1COL to BASIC, while the CCCma stands the most
to gain by going from BASIC to CLDS.

4.2.2. Time series analysis

An obvious area to look for rapid development of
responses due to high-frequency noise generated by
McICA is in the magnitude of temporal fluctuations
for variables ϕ with short characteristic response times.
Variables in the lower atmosphere or at the surface are
good candidates, particularly ones that are influenced
directly by McICA-related noise. For a discrete time
series spanning a length of time L, fluctuations of ϕ are
assessed via the second-order structure function which is
defined as

S2(r) = 〈
[ϕ (t + r) − ϕ (t)]2〉 , (8)

where t is time and r is a time lag. S2(r) is related, by
the Wiener–Khinchine theorem, to the power spectrum
(Marshak and Davis, 2005), and is a very intuitive
measure of typical fluctuations over a wide range of time.
For ranges of r that behave like

S2(r) ∼ rζ(2), (9)

1 < β = ζ(2) + 1 < 3 , where β is the spectral exponent
of the power spectrum.

The region of central Canada bounded by 55◦–65◦N
and 95◦–105◦W has a continental winter climate with
surface temperatures that are sensitive to the presence of
cloud. Averaging over this relatively large area, which
is about seven times as large as the coarsest GCM grid
spacing, should alleviate differences that might arise due
to variable grid spacings among the GCMs. Figure 11
shows S2(r) for 2 m air temperatures averaged over
this region. Clearly, McICA noise has little impact of
fluctuations of surface temperature. The magnitude of
differences as a function of McICA noise shown here
echo not only other areas of the globe but also resemble
closely other surface variables such as precipitation rate
and pressure. Note also that all models agree nicely on the
magnitude of S2(r) and that they all show a well-defined
scaling regime between roughly r = 1 h to r = 48 h with
ζ(2) 	 3/2 (or β 	 5/2).

The variable whose S2(r) exhibited by far the largest
sensitivity to McICA noise was, again, low-cloud
fraction. Figure 12 shows S2(r) for low-cloud frac-
tion averaged for the region bounded by 5◦S–5◦N and
170◦–180◦E. This region showed particular sensitivity to
McICA noise, as documented by Räisänen et al. (2005)
for CAM1.8. The most striking aspect of this plot is
the hypersensitivity of the GFDL model (regardless of

radiation time-step length) to substantial McICA noise
generated by 1COL, where fluctuations on short time-
scales are almost an order of magnitude larger than those
for REF and ζ (2) 	 0 for all r , whereas ζ (2) 	 1 for
REF for r � 24 h. Evidently, McICA noise has added
a large amount of variance directly to low-cloud fraction
estimates coming straight from the cloud parametrization.
For its BASIC simulation, however, fluctuations almost
match perfectly those of REF for all r .

The plot in Figure 12 for CAM3 shows that fluctua-
tions in low-cloud fraction for r � 3 h increase slightly
as McICA noise is added. This is perfectly understand-
able. For larger r , however, the magnitudes of typical
fluctuations decrease as noise increases which seems to
be counter-intuitive. As a result, going from REF to
1COL, ζ (2) changes from ∼7/6 to ∼5/6. For the CCCma,
ECHAM5 and GEM GCMs, the introduction of McICA
noise has little effect on S2(r). For ECMWF, however,
the magnitude of S2(r) is least for 1COL for all r . Again,
this seems counter-intuitive for it implies that the addition
of McICA noise suppresses, albeit slightly, fluctuations
of low-cloud fractions. To lesser extents, this is also the
case for ECMWF’s 2 m temperature as well as low-cloud
fraction for CAM3 and GEM.

Another aspect of Figure 12 to note, though not related
directly to McICA noise, is that while three of the
GCMs (CAM3, CCCma and GEM) exhibit clear diurnal
cycles in low-cloud fraction for this region with relative
maxima in S2(r) at r = 12 + 24n h and minima at r =
24(n + 1) h, for n = 0, 1, 2, 3 . . . , the other three lack
a diurnal signal. Moreover, the magnitude of S2(r), for
any r , is five to ten times larger for the CCCma and
GEM models than for the other models. These differences
swamp McICA-generated differences.

To further the points just discussed, Figure 13 shows
the global impact of McICA noise on ζ (2) for the semi-
diurnal range (i.e. r � 12 h). Consistent with Figure 12,
CAM shows a ubiquitous reduction in ζ (2) as noise
increases, CCCma, ECHAM5, and GEM show almost
no effect, and ECMWF exhibits very little impact as well
except a slight, but general, and again counter-intuitive,
increase in ζ(2) going from REF to 1COL. The odd
man out is GFDL where it is now clear that the massive
reduction in ζ (2) going from REF to 1COL as seen in
Figure 12 is actually a global phenomenon that is far
from fully recovered by BASIC. Interestingly, however,
the corresponding impacts of McICA noise on ζ (2) for
total precipitation, large-scale precipitation, and 2 m air
temperature were all very minor (and not worth showing).
Hence, the large changes to fluctuations in low-cloud
fraction involved non-precipitating clouds.

5. Conclusions

Broadband radiative fluxes computed by the Monte
Carlo Independent Column Approximation (McICA) are
demonstrably unbiased with respect to the full ICA. As
such, McICA represents somewhat of a dénouement for
the genre of GCM radiative transfer algorithms that aspire
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(a) (b)

Figure 10. (a) shows fractional areas of the globe exhibiting statistically significant differences for low cloud fraction, at the 95% confidence level,
as a function of McICA noise (i.e. standard deviation) associated with net short-wave surface irradiance. (b) is as (a) but for 2 m air temperature.

1COL results have the largest standard deviations. This figure is available in colour online at www.interscience.wiley.com/journal/qj

Figure 11. Second-order structure functions for 2 m air temperature averaged over the region 55–65◦N, 95–105◦W as functions of lag time.
Results are shown for three versions of McICA for each GCM. All analyses were for data with 2-hour time steps, except for the CAM3 GCM

which had a 1-hour step. The grey line is for reference and highlights the consistency among GCMs and McICA noise levels.

to reproduce full ICA results. The penalty for eliminating
biases, however, is random noise. If it so happens that
this random noise, extraneous information injected at the
GCM’s inner-scale, gives rise to statistically significant
impacts on GCM simulations, this could render McICA
useless. Thus, this paper summarizes the impact of
random noise generated by McICA on a diverse group
of GCMs.

With the exception of the excessive random noise
associated with the 1COL version of McICA, noise

produced by all realizations of McICA, from those most
likely to be used in GCMs to those that squelch noise
unnecessarily, have no statistically significant affects on
short, 14-day, GCM simulations. Even for the 1COL ver-
sion, not all GCMs showed a significant response to noise
and those that did were not impacted significantly for all
variables. For instance, the CAM3 GCM showed signif-
icant impacts for low cloud and 2 m surface temperature
due to noise from 1COL, but its large-scale precipita-
tion was influenced only very weakly. For the BASIC
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Figure 12. Second-order structure functions for low-cloud fraction averaged over the region 5◦S–5◦N, 170–180◦E as functions of lag time.
Results are shown for three versions of McICA for each GCM. All time series used data with 2-hour time steps, except for the CAM3 GCM

which had a 1-hour step. Vertical lines are for reference and indicate periods of 12 and 24 hours.

and CLDS versions of McICA, no model displayed any
significant impacts from noise. This corroborates pre-
vious studies by Pincus et al. (2003; 2006), Räisänen
et al. (2005), and Morcrette et al. (2008) and suggests
strongly that, for most applications, McICA-generated
noise should be of little or no concern.

There were some peculiar results. For example, the two
weather forecast models which operated at the highest
spatial resolution actually showed a slight reduction in the
magnitude of low-cloud fluctuations at most frequencies
as McICA noise increased. This seems counter-intuitive;
one would expect introduction of high-frequency noise
to increase high-frequency fluctuations in most variables.
Another GCM showed only an increase in high-frequency
low-cloud fluctuations when noise increased and reduc-
tions for frequencies longer than a day.

The experiments performed and assessed here address
only the ramifications of noise on fast to intermedi-
ate climatic variables. The underlying assumption was
that, if these variables were not influenced, it is unlikely
that McICA’s noise could somehow emerge later on. Of
course, given the complexity of modern GCMs, the valid-
ity of this assumption cannot be taken fully for granted.
Tests should be extended to interactive ocean–atmosphere
GCMs integrated over substantial stretches of time.
Nevertheless, until it is demonstrated that omission of 3D
radiative transfer effects in conventional GCMs is detri-
mental to simulations (i.e. the ICA is an inadequate stan-
dard), results presented here suggest that McICA should
be sufficient for most applications of conventional GCMs.
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